Оптические мультиплексор

FiberMX PDH GEth ADM 4GEth/16E1

Руководство по эксплуатации

НИКА 2014

РЭ

Содержание	стр
1 Назначение	3
2 Технические характеристики	3
3 Указания мер безопасности	4
4 Комплект поставки мультиплексоров PDH-1G	4
5 Установки по умолчанию	4
6 Описание оборудования	5
7 Установка и подключение	6
8 <u>Подключение к web-интерфейсу</u>	7
9 Настройка локальной сети	8
10 <u>Настройка SNMP</u>	9
11 <u>Состояние SFP</u>	10
12 Состояние и управлении оптическими линиями.	11
13 <u>Тестер потоков Е1</u>	13
14 <u>Порты Е1</u>	17
15 Кросс-коммутация потоков Е1	
16 <u>Порты Eth</u>	21
17 Конфигурация режимов	22
18 Обновление программного обеспечения	24
Приложение А	25
Лист изменений	28

1 Назначение

16-ти портовый PDH мультиплексор FiberMX PDH GETH ADM 4GEth/16E1 (далее по тексту PDH-1G) предназначен для передачи 8/16 потоков E1 G.704 (2048 кбит/с) и 4-х 1000Mbps Ethernet по оптическим линиям со скоростью 1.25 Гбит/с.

Для подключения к оптическим линиям используется промышленный стандарт модульных компактных приёмопередатчиков SFP (англ. Small Form–factor Pluggable). PDH–1G поддерживает функцию Automatic Laser Shutdown (ALS), что позволяет автоматически отключать лазер.

PDH-1G имеет 4 порта Gigabit Ethernet и может использоваться в качестве сетевого коммутатора.

2 Технические характеристики

Технические характеристики соответствуют ГСТУ 45.023, ГОСТ 27763 и рекомендациям G.703.6,G.704 ITU–T, распространяющимся на стыковые сигналы, параметры стыка и структуру стыка ИКМ–30.

- Основные параметры линейного сигнала портов Е1:
 - измерительное нагрузочное сопротивление 120 Ом активное;

 – минимальный принимаемый уровень – минус 6 дБ относительного уровня передачи;

- соответствие рекомендациям ITU-T G.823 и G.742.
- Оптические порты:
 - 2 компактных разъема под модули приёмопередатчиков SFP;
- скорость передачи 1.25 Гбит/с, расстояние передачи зависит от модуля SFP;
 - функция автоотключения лазера Automatic Laser Shutdown (ALS);
 - модули SFP в комплект поставки не входят.
 - Порты Gigabit Ethernet
 - скорости 1 Гбит/с в соответствии с стандартами IEEE 802.3af;
 - автоматическое определение дуплексного режима;
 - автоматическое определение типа используемого кабеля (прямой/перекрещенный);
 - управление потоком в соответствии IEEE 802.3x;
 - максимальная длина пакета 1536 байт.
 - Электропитание:

– напряжение внешнего источника питания – минус 48 В (минус 60 В). Допустимые колебания напряжения – от 36 В до 72 В;

- потребляемый ток не более 1,5А.
- Габаритные размеры :
 - глубина 140 мм;
 - ширина 445 мм;
 - высота 43,6 мм.(1U)
- Масса не более 1,7 кг.
- Климатические параметры:

- рабочая температура от 0° до плюс 50° C;
- максимальная относительная влажность 80 % при температуре плюс 25° С;
- атмосферное давление от 84 до 106 кПа (от 630 до 795 мм рт. ст.).

3 Указания мер безопасности

К работам допускается технический персонал, знакомый с правилами безопасной эксплуатации и устройством оборудования PDH–1G, имеющий квалификационную группу по технике безопасности не ниже третей.

Замену PDH–1G и осмотр монтажа производить только при отключенном напряжении питания.

Корпус устройства должен быть подключен к защитному заземлению.

При работе PDH–1G необходимо соблюдать "Правила технической эксплуатации электроустановок потребителей" и "Правила техники безопасности при эксплуатации электроустановок потребителей".

Строго соблюдать правила пожарной безопасности по ГОСТ 12.1.004.

4 Комплект поставки мультиплексоров PDH-1G

В комплект поставки входят:

	PDH-1G-8E1	PDH-1G-16E1
Мультиплексор PDH-1G	1 шт;	1 шт
Разъём RJ 45	8 шт	16 шт
Руководство по эксплуатации	1 шт	1 шт
Паспорт	1 шт	1 шт
Разъём Molex MX 5569-04	1 шт	1 шт
Контакты к разъёму	2 шт	2 шт

*Модули SFP в комплект поставки не входят.

5 Установки по умолчанию

IP-адрес - 192.168.0.2

Имя пользователя – не установлено

Пароль – не установлено

6 Описание оборудования

На передней панели устройства(рис. 1) расположены разъемы 16-ти портов Е1 и их индикаторы, 4 порты Gigabit Eth с индикаторами, 2 порта SFP.

Рисунок 1 – Передняя панель PDH-1G

Порты Е1 интерфейса расположены на передней панели устройства. Назначение контактов разъемов приведены в Приложение А .Под портами Е1 расположены красные индикаторы, которые сигнализируют о наличии соединения. Зеленый светодиод сигнализирует о наличии сигнала, красный — об ошибках. В выключенном состоянии оба светодиода неактивны.

Разъемы для SFP модулей под оптические линии LA и LB расположены на передней панели. Светодиоды состояния оптических линий расположены с права: LinkA и LinkB – сигнализируют о наличии сигнала на соответствующей линии, двухцветные светодиоды AlarmA и AlarmB — текущее состояние красный свет — наличии ошибок по линии.

Разъемы Gigabit Eth1...4 Предназначены для использования устройства в режиме сетевого коммутатора. Индикаторы под разъемами Eth Activity/Link.

Светодиод «RUN» - показывает запуск контролера, «ACT» - наличие пакетов Eth данных на контролере.

Конфигурация и контроль PDH–1G производится по WEB–интерфейсу. Контроль состояния портов и интерфейсов возможен по SNMP протоколу.

На панели устройства под светодиодами размещена кнопка «RST CFG». Нажатие кнопки во время включения позволяет кратковременно (до следующей перезагрузки) установить IP адрес по умолчанию и сбросить логин и пароль.

Разъем питания и тумблер включения устройства расположены справа на передней панели. Назначение контактов разъема питания приведено в Приложение А.

PЭ

7 Установка и подключение

Перед подключением устройства прочтите данное руководство пользователя. Убедитесь, что у Вас имеется все необходимое оборудование, а также информация по всем используемым устройствам.

Пожалуйста, при установке следуйте ниже перечисленным рекомендациям

Установите устройство таким образом, чтобы избежать воздействия на устройство источников сильного электромагнитного поля, вибрации, пыли и прямых солнечных лучей.

 Убедитесь, что существует надлежащий теплоотвод и соответствующая вентиляция вокруг устройства.

– Подключите корпус устройства к защитному заземлению.

– Подготовьте кабеля и подключите их. Распайка кабелей приведена в Приложение А .

 Подайте питание на устройство и включите его. Процедура инициализации занимает некоторое время, по истечении которого устройство становится доступным для конфигурации. После окончание загрузки программы светодиод «IND» погаснет.

 Подключите устройство к компьютеру и произведите конфигурацию устройства. Для подключения устройства к компьютеру используется стандартный прямой Eth-кабель или кабель с перекрутом. Настройка и управление выполняется с помощью встроенного web-интерфейса.

– Сохранените конфигурацию. Чтобы выполненные Вами настройки не были потеряны при аппаратной перезагрузке (случайном или преднамеренном отключении питания устройства), рекомендуется сохранить их в энергонезависимой памяти устройства.

8 Подключение к web-интерфейсу.

Запустите web-браузер (Firefox, Opera или др.) и зайдите на устройство, введя IP-адрес устройства в адресную строку панели навигации (**IP адрес устройства по умолчанию 192.168.0.2.**). Для успешной работы с web-интерфейсом устройства в web-браузере должна быть включена поддержка JavaScript и Cookies. Убедитесь, что данные опция не были отключены другим программным обеспечением (например, антивирусной программой или другим ПО, обеспечивающим безопасную работу в глобальной сети), запущенным на Вашем компьютере.

Если при попытке подключения к web–интерфейсу устройства браузер выдает ошибку типа «*Невозможно отобразить страницу*», убедитесь, что устройство правильно подключено к компьютеру.

В случае успешного подключения откроется web-страница устройства (рис. 2).

📙 НИКА		
 ✓ Main ● IP Setup ● SNMP Setup 	FiberMX PDH GEth	
• SFP	Model:	50529.1
Optical Lines	Version:	1.2.0
EI DERI E1 Interfaces	Rev.:	14.02.2017
E1 Map	Мас	0050C27361C6
 Eth Ports Configuration 	Host name:	HOSTNAME
	Contacts:	CONTACT
	Location:	LOCATION
Save	Operation time:	2:47:37

Рисунок 2 – Web-страница "Main"

На странице «Main» приведена общая информация по устройству и его программному обеспечению (версия внутреннего ПО и дата его создания, МАС–адрес устройства, время непрерывной работы и др.)

В левой части страницы представлена структура web–интерфейса устройства. Вы можете сразу перейти на необходимые страницы, нажав соответствующую ссылку. Снизу структуры доступных web–страниц устройства находится кнопка «Save Configuration» позволяющая сохранить настройки в долговременную память.

Обязательно сохраняйте настройки после любого изменения параметров устройства. Без сохранения, после очередной перезагрузки изменения будут утеряны.

9 Настройка локальной сети.

Если необходимо изменить IP-адрес LAN-интерфейса и маску локальной подсети перейдите на страницу «IP Setup» (рис. 3).

📙 НИКА		
● Main ダ IP Setup	IP Host Setup	
 SNMP Setup SFP 	IP Address	192.168.0.2
Optical Lines	IP Mask	255.255.255.0
E1 BERT	Gateway	192.168.0.1
E1 Interfaces		
Eth Ports	Мас	0050C27361C6
Configuration	Locia	
	Login	
	Password	
Save		Применить

Рисунок 3 – Web–страница "IP Setup"

В полях «IP Address» и «IP Mask» внесите новые значение и нажмите кнопку «Apply». После применения изменений снова зайдите на устройство, введя новый IP-адрес в адресную строку панели навигации.

Устройству назначен уникальный заводской МАС-адрес. Изменение пользователем МАС-адреса не рекомендуется.

Для разрешения доступа на web–интерфейс только авторизированым пользователям – введите имя пользователя(Login) и пароль администратора(Password).

Изменения вступят в силу после нажатия кнопки «Apply».

Нажатие кнопки «RESET» на задней панели во время включения кратковременно (до следующей перезагрузки) устанавливает IP адрес по умолчанию (192.168.0.2) и сбрасывает логин и пароль.

10 Настройка SNMP.

Настройка SNMP выполняется на странице "Установки SNMP" (рис. 4).

📕 НИКА		
MainIP Setup	SNMP Setup	
SNMP Setup	Community Public	public
 Optical Lines 	Community Trap	trap
• E1 BERT	Trap Server Address	192.168.0.1
E1 Interfaces	Cold Start Trap Enable	
ET map Eth Ports	Link Down Trap Enable	
Configuration	Link Up Trap Enable	
	System Contact	CONTACT
	System Name	HOSTNAME
Save	System Location	LOCATION

Рисунок 4 – Web–страница "SNMP Setup"

Простой протокол сетевого управления Simple Network Management Protocol (SNMP) – протокол для управления и контроля сетевого оборудования. SNMP дает возможность станциям управления сетью читать и изменять настройки сетевых устройств. Используйте SNMP для настройки системных характеристик для правильной работы, контроля характеристик и обнаружения потенциальных проблем в устройстве, группе устройств или сети.

Устройства поддерживают программное обеспечение SNMP (SNMP агент), работающее локально на оборудовании. Определенный набор управляемых объектов обслуживается SNMP и используется для управления устройством. Эти объекты определены в базе данных управляющей информации MIB (Management Information Base), которая обеспечивает стандартное представление информации, контролируемое встроенным SNMP–агентом.

Устройство поддерживает SNMP версии 1.0 и 2.0. SNMP-агент декодирует входящие SNMP-сообщения и отвечает на запросы объектов базы управляющей информацией MIB, сохраненных в базе данных. SNMP-агент обновляет объекты MIB для формирования статистики и счетчиков.

В SNMP версиях v.1 и v.2 аутентификация пользователей осуществляется при помощи так называемой «строки сообщества» («**community string**»), данная функция похожа на пароли. Удаленный пользователь приложения SNMP и агента должен использовать одну и ту же community string. Пакеты SNMP от станций, не прошедших аутентификацию будут игнорироваться (удаляться).

«Traps» – это аварийные сообщения, сообщающие о событиях, происходящих в устройстве. События могут быть такими серьезными, как перезапуск (Cold Start) или менее, как например, изменение статуса порта(Link Down и Link Up). Коммутатор создает сообщения «traps» и отправляет их к «trap» получателю (или сетевому менеджеру).

11 Состояние SFP

SFP (англ. Small Form–factor Pluggable) — промышленный стандарт модульных компактных приёмопередатчиков (трансиверов), используемых для передачи данных в телекоммуникациях. Модули SFP используются для присоединения платы сетевого устройства к оптическому волокну или неэкранированной витой паре, выступающих в роли сетевого кабеля.

Вся информация о портах находится на странице «SFP» (рис. 5). В системе присутствует 2 порта SFP.

📙 НИКА			
 Main IP Setup SNMP Setup SNMP Setup 	Fiber SFP Modules	LA	LB
 Optical Lines 	Link	Present	Present
• E1 BERT	Vendor Name	APAC Opto	OEM
E1 Interfaces	Vendor IEEE	000f99	009065
Eth Ports	Revision	30303030	41302020
Configuration	Part Number	LS38-C3S-TI-N	SFP-WDM1.25G-55
	Serial Number	DA0422	SH4878
	Connector	LC	LC
Save	Nominal Bit Rate, Mbps	1300	1300
	Length, m	10000	10000
		Reload	

Рисунок 5 – Web–страница "SFP Status"

Fiber SFP Module – Информация о подключенных SFP модулях:

- Link наличие SFP модуля;
- Vendor Name имя модуля;
- Part Number модуль модуля;
- Connector тип коннектора;
- Nominal Bit Rate номинальная скорость;
- Length возможная длинна передачи сигнала.

12 Состояние и управлении оптическими линиями.

📙 НИКА		
 Main IP Setup SNMP Setup SFP Optical Lines 	Optical line #LA	
E1 BERT E1 Interfaces	Status	ОК
E1 Map	Remote Side Status	ОК
Eth Ports	Power	
	LoopBack	
	Automatic Laser Shutdown (ALS)	
Cause	Loss of Optical Signal	0
Save	Loss of Optical Frame	0
	Excessive Bit-Error	0
	BIP-10 Bit error checksum	0
	Signal Degradation	0
	Adjacent optical port mismatch	0
	Physical Layer Failure	0
	Remote Alarm	0
	Remote BIP-10 Bit error checksum	0
		Clear Errors
	Tx Eth Packet	93385
	Rx Eth Packet	34319
	Illegal Size Packet from EthNet	0
	FSC Error Packet from EthNet	0

Рисунок 6 – Web–страница "Optical Lines"

• Status && Remote Side Status – состояние локального оптического приемника и на удаленной стороне, соответственно. Возможные значения представлены в таблице 1.

Таблица 1	
Status	Описание
Disable	Порт отключен пользователем
Not Exist	Оптический приемопередатчик(SFP) отсутствует.
LOS	Los optical signal. Потеря сигнала.
LOF	Loss optical frame. Потеря фреймовой синхронизации.
EXC	Excessive Bit-Error. При единичных ошибках BER-3
DEG	ignal Degradation. При единичных ошибках BER-6

ОК	Состояние готовности. Критический ошибки отсутствуют.
OPT_FAIL	Physical Layer Failure. При наличии одной из ошибок: LOS, Not Exist или
	при отключении порта (Disable).

- **Power** управление питанием приемопередатчика.
- Automatic Laser Shutdown (ALS) управление функцией автоматического отключение лазера. Функция позволяет минимизировать риск воздействия на глаза лазера при разрыве волокон. Если отсутствует оптический сигнал, мощность будет понижена или отключена. Оптический интерфейс начнет периодически посылать лазерный импульс с определенным интервалом, чтобы восстановить передачу. Функция ALS соответствует рекомендациям ITU-T G.664 и IEC60825.
- LoopBack заворот данных оптического приемопередатчика.
- Los optical signal (LOS) счетчик потерь сигнала.
- Loss optical frame(LOF) счетчик потерь фреймовой синхронизации.
- Local real time alarm оповещение о локальных ошибках;
- Excessive Bit-Error(EXC) счетчик единичных ошибок BER-3.
- **BIP-10 Bit error checksum** счетчик битовых ошибок.
- Signal Degradation(DEG) счетчик единичных ошибок BER-6.
- Physical Layer Failure (FAIL) счетчик ошибок OPT_FAIL.
- Remote BIP-10 Bit error checksum счетчик битовых ошибок на удаленной стороне.
- **Tx Eth Packet** количество отравленных Eth пакетов по оптической линии.
- **Rx Eth Packet** количество принятых Eth пакетов с оптической линии.
- **Illegal Size Packet from EthNet** количество принятых с ошибками Eth пакетов с локальных портов, направленных в оптическую линию..
- FSC Error Packet from EthNet— количество принятых с ошибками Eth пакетов с локальных портов, направленных в оптическую линию.

12

13 Тестер потоков Е1.

E1BERT – тестер потока E1. Тестер поддерживает структуру кадров G.704, а также может проводить диагностику неструктурированного потока. Поддерживает передачу и прием 4-х различных тестовых последовательностей. Приемник и передатчик тестовой последовательности могут работать независимо. Тестер может работать как в режиме offline, так и в режиме online.

Управление тестером потока производится на вкладке E1BERT (рисунок 7).

📑 НИКА		
 Main IP Setup 	E1 Bit Error Rate Tester	
 SNMP Setup SFP 	RX Port	0
Optical Lines	TX Port	0
🧉 E1 BERT	Enable G704	
 E1 Interfaces E1 Map 	Test Pattern Select	ALL ZERO 💌
Eth Ports	User-Defined Test Pattern	E0
Configuration		Start
	Counter Error	
	State	Disable
Save	Счетчик ошибок кода (BER)	0
	Счетчик потерь сигнала (LOS)	0
	Счетчик потерь синхр. по фрейму (LOF)	0
	Счетчик потерь синхр. по мультифрейму (LOM)	0
	Счетчик ошибок CRC	0
	G.821	
	Длительность поражения сигнала ошибками (ES)	0:00:00
	Продолжительность многократного поражения ошибками (SES)	0:00:00
	Время, свободное от ошибок (EFS)	0:00:00
	Время готовности порта (AS)	0:00:00
	Время неготовности порта (UAS)	0:00:00
		Clear Errors

Рисунок 7 – Web–страница "E1 BERT"

- *RX Port* выбор порта приема. Может принимать значение E1.1...E1.16, LA.1...LA.95, LB.1...LB.95. Значение 0 отключает приемник.
- *TX Port* выбор порта передачи тестовой последовательности. Может принимать значение **E1.1**...**E1.16**, **LA.1**...**LA.95**, **LB.1**...**LB.95**. Значение **0** отключает передатчик тестовой последовательности.
- *Enable G704* Включает тестирование структуры синхронных кадров (фрейм, мультифрейм, CRC4).
- *Test Patern Select* Выбор тестовой последовательности. Описание тестовых последовательностей приведено в таблице 2.

Таблица 2

Patern	Описание
ALL_ZERO	Все нули.
AIS	Все единицы.
PRBS15	Псевдо-случайная последовательность (Pseudo-Random Binary Sequence).
USER	Определяемая пользователем в поле User-Defined Test Pattern.

- *Start* конка включения тестера E1.
- User-Defined Test Pattern Определяемая пользователем тестовая последовательность.
- *State* Состояние порта. Возможные значения приведены в таблице 3.

Таблица 3	
Состояние	Описание
Disable	Порт выключен.
Not Exist	Порт приема сигнала не подключен.
LOS	Потеря сигнала. Нет приема сигнала.
FAS	Потеря фреймовой синхронизации*.
NFAS	Потеря мульти-фреймовой синхронизации*.
CRC	Ошибка контроля CRC-4*.
RMT_CRC	Ошибки контроля CRC-4 на удаленной стороне*.
RDI	Авария на удаленной стороне.
BER-3	Единичные ошибки с коэффициентом ошибок ≥ 10-3 в секунду.
BER-5	Единичные ошибки с коэффициентом ошибок ≥ 10-5 в секунду.
BER-6	Единичные ошибки с коэффициентом ошибок ≥ 10-6 в секунду.
AIS	Все единицы.
PATTEN_LOS	Ошибка приема тестового шаблона

- * Только при включеном режиме G.704.
- BER (Bit Error Counter) счетчик битовых ошибок;
- CRC Error Counter счетчик ошибок CRC;
- LOS(Loss of E1 Input Signal counter) счетчик потерь сигнала;
- LOF (Loss of G.704 Frame counter) счетчик потерь синхронизации кадра;
- LOM (Loss of CRC–Multi–Frame counter) счетчик потерь сверхцикловой синхронизации.

В рекомендации G.821 в качестве параметра ошибок цифрового соединения выбраны два следующих:

FiberMX PDH GEth

• число секунд с ошибками (Errored Second, ES), к которым относится каждая секунда, в которой имеется по крайней мере одна ошибка. Как следует из определения, при таком подходе одиночная ошибка и пакет ошибок не различаются.

• число секунд с многочисленными ошибками (Severely Errored Second, SES), где SES означает секунду с коэффициентом ошибок ≥ 10-3.

Заметим, что наличие двух параметров оценки ошибок позволяет не только более точно определить качество цифрового соединения, но и во многих случаях оказывается полезным при локализации возможных повреждений.

Все время измерения разбивается на две половины: время готовности канала (AS) и время неготовности канала (UAS). Время неготовности канала начинают отсчитывать после приема 10 последовательных секунд с параметром BER хуже 10 -3, при потере сигнала(LOS) или потере фреймовой синхронизации(FAS, NFAS). Измерение времени ES и SES параметров ошибки производятся только во время готовности канала.

Кнопка «Clear Error» используется для сброса счетчиков.

Ниже представлены типовые схемы включения тестера потока (Рисунок 8 и 9). Заворот оптической линии производится на странице **Optical Lines** или физически. Заворот порта E1 на странице **E1 Interfaces** или физическим соединением кабеля.

Рисунок 9: Схема соединения E1BERT

14 Порты Е1

Вся информация о портах E1 находится на странице «E1 Interface» (рис. 10). В системе присутствует до 16 портов E1. Выбор порта производится с использованием вкладок.

📕 НИКА	
 Main IP Setup SNMP Setup SFP Optical Lines E1 BERT E1 Interfaces E1 Map Eth Ports Configuration 	State Port #E1.9 #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12 #13 #14 #15 #16 Enable ✓ Loopback toward Inside □ <td< th=""></td<>
Save	

Рисунок 10 – Web–страница "E1 Interface"

Информационные поля портов Е1:

- Enable включение порта E1.
- Loopback toward Inside заворот с внутреннего передатчика на приемник HDB3.
- Loopback toward Outside включение заворота со стороны физического интерфейса.
- Status состояние порта E1. Возможные состояния приведены в таблице 4.

Таблица 4

Status	Описание
Not Exist	Отсутствует плата интерфейса Е1.
Power Off	Выключен.
LOS	Нет сигнала.
AIS	Идет прием всех единиц.
ОК	Состояние готовности.

- Bit Error Counter (BER) Счетчик единичных ошибок.
- Loss of E1 Input Signal counter (LOS) счетчик потерь сигнала. Кнопка «*Clear Error*» используется для сброса счетчиков.

15 Кросс-коммутация потоков Е1

Настройка кросс-коммутации потоков Е1 производится на web-странице «Е1 Мар» (рис. 11). Коммутация производится на уровне потоков. Режим коммутации потоков доступен только в режиме Optical Net Topology: P2DP (Point to Dual Points). Настройка топологии оптической сети производится на вкладке «Configuration» (см. 17).. В режиме P2P (Point to Point) потоки коммутируются жестко с 1-го по 16-тый и доступ до карты потоков заблокирован.

 Main IP Setup SNMP Setup 	Мар Е	1 Port	S										
 Optical Lines E1 BERT E1 Interfaces 													
✓ E1 Map ● Eth Ports	LA	1 E1.1	2 E1.2	3 E1.3	4 E1.4	5 E1.5	6 E1.6	7 E1.7	8 E1.8	9 X	10 X	11	X 12 RES
Configuration		13 E1.9	14 E1.10	15 E1.11	16 E1.12	17 E1.13	18 E1.14	19 E1.15	20 E1.16	21 X	22 X	23	X RES
		25 X	26 X	27 X	28 X	29 X	30 X	31 X	32 X	33 X	34 X	35	X 36 RES
Save		37 X	38 X	39 x	40 ×	41 x	42 X	43 ×	44 x	45 ×	46 X	47	48
		49 V	50	51	52	53	54	55 V	56	57	58	59	60 FE
		61 V	62 V	63 V	64 V	65 V	66	67 X	68	69	70	71	72 T2
		73	74	75	76	77	78	79 	x 80	81	82	83	84 RES
		x 85	X 86	x 87	X 88	X 89	x 90	91 X	х 92	93	94	95	X RES
		х	x	x	х	x	х	x	Х	х	x		X RES
	LB	1 X	2 X	3 X	4 X	5 X	6 X	7 X	8 X	9 X	10 X	11	X RES
		13 X	14 X	15 Х	16 X	17 X	18 X	19 X	20 X	21 X	22 X	23	x 24 RES
		25 X	26 X	27 X	28 X	29 X	30 X	31 X	32 X	33 X	34 X	35	x 36 RES
		37 X	38 X	39 X	40 X	41 X	42 X	43 X	44 X	45 X	46 X	47	X 48 RES
		49 X	50 X	51 X	52 X	53 X	54 X	55 X	56 X	57 X	58 X	59	X 60 RES
		61 X	62 X	63 X	64 X	65 X	66 X	67 X	68 X	69 X	70 X	71	x 72 RES
		73 X	74 X	75 X	76 X	77 X	78 X	79 X	80 X	81 X	82 X	83	x 84 RES
		85 X	86 X	87 X	88 X	89 X	90 X	91 X	92 X	93 X	94 X	95	X 96 RES
	E1	1	2	3	4	5	6	7	8				
		LA.1 9	LA.2	LA.3	LA.4	LA.5	LA.6	LA.7	LA.8				
	Duoy	LA.13	LA.14	LA.15		LA.17	LA.18	LA.19	LA.20				

web-страница "Chanels map Рисунок 11

На странице доступны потоки портов E1 и оптических линий LA и LB. Потоки могут быть коммутироваться в разных конфигурациях: LA-LB, E1-LA, E1-LB.

Возможные обозначения соединения приведены в таблице 5.

	05		U	
$130\pi M H 3$		TUTOP	соепицении ка	NTLI VAUATOR
таолица Э.	Obositatemite	THIUD	сосдинсний ка	

Обозначение	Описание
0 E1[0]	E1.[N] – Соединение потоком E1 под номером N
0 L.1[0]	LX.[Y] – Соединение с потоком Y оптического порта X
8 X	Поток без соединения (свободный канал).
95 RES	Зарезервированный. Для выбора недоступен.

Для установления соединения необходимо выбрать два потока (рис. 12). Одно нажатие мышкой на поток производит выбор, повторное нажатие — отмена выбора. Выбранные потоки выделяются цветом. Информация о выбранных потоках отображается в информационных окнах.

Рисунок 12 - Создание соединения

Нажатие на кнопку «<->» создает соединение.

Нажатие кнопки «-Х-» произведет разъединения каналов (рис. 13).

	#LA.2	26				-X -] # L	.A.29				
LA	1	2	3	4	5	6	7	8	9	10	11	12
	E1.1	E1.2	E1.3	E1.4	E1.5	E1.6	E1.7	E1.8	X	X	X	RES
	13	14	15	16	17	18	19	20	21	22	23	24
	E1.9	E1.10	E1.11	E1.12	E1.13	E1.14	E1.15	E1.16	X	X	X	RES
	25	26	27	28	29	30	31	32	33	34	35	36
	X	LA.29	X	X	LA.26	X	X	X	X	X	X	RES

Рисунок 13 – Разъединение существующего соединения

Соединение/разъединение каналов осуществляется сразу, без перезагрузки устройства.

16 Порты Eth

Вся информация о внешних портах ЕТН находится на странице «Eth Ports» (рис. 14). Порт Eth1 является портом к которому подключен управляющий микроконтроллер. Выбор порта производится с использованием вкладок.

ника		
 Main IP Setup SNMP Setup SEP 	Ethernet Ports # 1 #1 #2 #3 #4	
Optical Lines	State	Enabled
E1 BERT	Link Status	UP
E1 Interfaces	Duplex Mode	Full
Seth Ports	Sp ee d Mode	100
Configuration	Conected to Optica	LA/LB
	Optical Line Select	
Save		

Рисунок 14 – Web–страница "Eth Ports"

Информационные поля портов:

- State состояние портов коммутатора;
- Link Status индикатор подключения кабеля;
- **Duplex Mode** режим дуплекса;
- Speed Mode скорость;
- **Connect to Optical** информация о текущем подключение порта к оптической линии. Значение LA/LB показывает, что порт включен в режиме резервирования. При пропадании одной из оптической линии, данные будут приниматься с другой линии.
- Optical Line Select позволяет выбрать соединение с оптической линией. Режим доступен при выборе Manual Distribute Eth Port into Optical Line: true. Конфигурация отключает схему резервирования и доступна во всех топологиях оптической сети. Выбор конфигурации производится на странице «Configuration» (см. 17).

17 Конфигурация режимов.

Конфигурация режимов работы производится на странице «Configuration».

Рисунок 15 – Web–страница "Configuration"

Информационные поля режимов:

- Optical Net Topologi выбор топологии оптической сети. Возможен выбор режимов «P2P Dual optical Port»(см. рис. 16: режим точка — точка) и «Point to Dual Point» (см. рис. 17: режим точка — две точки). Режим «P2P Dual optical Port» включает резервирование потоков и Ethernet(при отключенной «Manual Distribute Eth Port into Optical Line»). В режиме «Point to Dual Point» возможна ручная коммутация потоков.
- EthC detached (EthC to only Eth1) опция изоляции порта управления устройством. При включенной опции управление устройством возможно только с порта Eth1.
- Manual Distribute Eth Port into Optical Line опция позволяет распределить порты Eth по оптическим линиям. Данная опция позволяет организовать передачу двух локальных сетей по разным оптическим линиям. Управление устройством будет возможно только с портов сети которой принадлежит порт Eth1.

Данные опции применяются только после сохранения и перезагрузке устройства. Сохранение и перезагрузка устройства производится с помощью кнопки «Save&Reboot».

Рисунок 16 – Net Topologi : P2P Dual optical Port

Рисунок 17 – Net Topologi : P2P Dual optical Port

18 Обновление программного обеспечения

На странице «Обновление ПО» Вы можете обновить внутреннее программное обеспечение. Данная страница не отображается в основном меню устройства. Для входа на страницу введите в адресную строку панели навигации IP-адрес устройства и название страницы /load.html. Например: 192.168.0.2/load.html.

Внимание! Во время обновления программного обеспечения не отключайте питание. Это может повлечь за собой выход устройства из строя.

♦ ⇒ ③ 192.168.0.2/load.html			ু ⊽ C ৫
Обновление программы			
Шаг1 - Очи	стка flash	Erase	
Шаг2 - Загрузі	(а файла	Вибрати Файл не вибр Load	ано.
ШагЗ - Пере	загрузка	Reboot	

Рисунок 18: Страница Обновление ПО.

1.Скачайте файл с новой версией программного обеспечения на сайте <u>www.nika.vin.ua</u>.

2. Нажмите кнопку Erase для удаления текущего и подготовки места под новое ПО. Дождитесь окончания процедуры стирания.

2.Нажмите кнопку Обзор на странице **Обновление ПО**, чтобы определить местоположение файла с новой версией ПО.

3.Нажмите кнопку Load для загрузки нового внутреннего ПО и дождитесь ее окончания (около пяти минут).

4. Перезагрузите устройство.

Если процедура прошла успешно после перезагрузки индикатор «IND» может мигать с периодичностью около 1 секунды в течении некоторого времени. После окончания загрузки нового ПО устройство автоматически запустится.

Приложение А

Разъем Е1 Тип: RJ45-8

вид спереди

Таблица 6 – Конт	гакты разъема Е1

Номер контакта	Наименование цепи	Назначение	Цвет провода
1	TTIP	Передача Е1	Бело-оранжевый
2	TRING	Передача Е1	Оранжевый
3	RTIP	Приём Е1	Бело-зелёный
4	Не используются		Синий
5	Не используются		Бело-синий
6	RRING	Приём Е1	Зелёный
7	Не используются		Бело-коричневый
8	Не используются		Коричневый

Приложение А (продолжение)

Разъем "Питание" Тип: Molex MX-5569-04

Рисунок 20 – Разъем "Питание"

Таблица 7	– Контакты	разъема	"Питание"
ruomigu /	Romanna	pustemu	Immunno

Номер контакта	Назначение
1	- 60B
2	
3	_
4	+ 60B

Лист изменений

Ревизия	Дата	Изменения
1	30.10.14	Создание руководства по эксплуатации на PDH-1G